
Newick Utilities Tutorial
Version 1.2.0 – April 22, 2010

Thomas Junier thomas.junier@unige.ch
Computational Evolutionary Genomics Group

Department of Genetic Medicine and Development
University of Geneva, Switzerland

[[[
Swiss Institute of Bioinformatics

http://cegg.unige.ch/newick_utils

HRV16

HRV1B

52

HRV24
HRV85

70

22

HRV11HRV9H
RV
64

H
R
V
9
4

32
54

1

17

H
R
V
3
9H

R
V
2

9
2

97
H
R
V
8
9

6
2

H
R
V
7
8

H
RV
12

52 1
0
0

HR
V3
7HR

V3

65

HR
V1
4

89

HRV
52

HRV17
100

75

HRV93

HRV27

99

83

48

POLIO3

POLIO2

POLIO1A

COXA18
22

38

C
O
X
A
17

72

97

C
O
X
A
1

76
E
C
H
O
1 C

O
X
B
2

8
3

E
C
H
O
6

9
9

H
E
V
7
0

H
EV
68

99

7
0

6
4

CO
XA
14

CO
XA
6

CO
XA

2

591
0
0

68

Contents

Introduction 3

1 General Remarks 5
1.1 Help . 5
1.2 Input . 5

1.2.1 Multiple Input Trees . 6
1.3 Output . 6
1.4 Options . 6

2 Simple Tasks 7
2.1 Displaying Trees . 7

2.1.1 As Text . 7
2.1.2 As SVG . 10
2.1.3 Ornaments . 17
2.1.4 Options not Covered . 21

2.2 Rooting and Rerooting . 21
2.2.1 Rerooting on the ingroup . 24
2.2.2 Derooting . 26

2.3 Extracting Subtrees . 27
2.3.1 Monophyly . 29
2.3.2 Context . 30
2.3.3 Siblings . 30
2.3.4 Limits . 31

2.4 Computing Bootstrap Support . 31
2.5 Retaining Topology . 33
2.6 Extracting Distances . 37

2.6.1 Selection . 39
2.6.2 Methods . 41
2.6.3 Alternative formats . 42

2.7 Finding subtrees in other trees . 42
2.8 Renaming nodes . 44

2.8.1 Breaking the 10-character limit in PHYLIP alignments 44
2.8.2 Higher-rank trees . 46

2.9 Condensing . 48
2.10 Pruning . 49

2.10.1 Keeping selected Nodes . 51
2.11 Trimming trees . 52
2.12 Indenting . 54
2.13 Extracting Labels . 58

2.13.1 Counting Leaves in a Tree . 58
2.14 Ordering Nodes . 59

1

2.14.1 Variants . 60
2.15 Converting Node Ages to Durations . 63
2.16 Generating Random Trees . 65
2.17 Stream editing . 66

2.17.1 Opening Poorly-supported Nodes 70

3 Advanced Tasks 72
3.1 Checking Consistency with other Data . 72

3.1.1 By condensing . 72
3.2 Bootscanning . 75
3.3 Number of nodes vs. Tree Depth . 76

4 Python Bindings 79
4.1 API Documentation . 80

A Defining Clades by their Descendants 81
A.1 Why not just use node numbers? . 82

B Newick order 83

C Installing the Newick Utilities 84
C.1 From source . 84
C.2 As binaries . 84

2

Introduction

The Newick Utilities are a set of UNIX (including Mac OS X) and UNIX-like (Cygwin)
shell programs for working with phylogenetic trees. Their main features are:

• they require no user interaction1

• they can work on any number of trees at a time

• they perform well with large trees

• they are implemented as filters2

• they read and write text

They are not tools for making phylogenies. Rather, they are for processing existing ones,
by which I mean manipulating the tree or extracting information from it: rerooting,
simplifying, extracting subtrees, printing branch lengths and distances, etc - see table
1; a glance at the table of contents should also give you an idea.

Each of the programs performs one task (with some variants). For example, here
is how you would reroot a series of phylograms contained in file mytrees.nw using
node Dmelano as the outgroup:

$ nw_reroot mytrees.nw Dmelano

Now, you might want to make cladograms from the rerooted trees. Program nw topology
does the job, and since the utilities are filters, you can do it in a single command:

$ nw_reroot mytrees.nw Dmelano | nw_topology -

As you can see, it is straightforward to pipe Newick Utilities together, and of course
they can be mixed freely with any other shell program (see e.g. 2.13.1).

About This Document

This tutorial is organized as follows: chapter 1 discusses common features of the Newick
Utilities, chapter 2 shows examples of simple tasks, and chapter 3 has examples of more
advanced tasks.

It is not necessary to read this material in order: you can pretty much jump to any
section in chapters 2 and 3, they do not require reading previous sections. I would
suggest reading chapter 1, then section 2.1 because it explains how all the tree graphics
were produced.

The files for all the examples in this tutorial can be found in subdirectory data.
All the program outputs are generated on-the-fly just before the document is run

through LATEX, so they represent the actual output of the latest version of the utilities.
1Why this is a good thing is not the focus of this document: I shall assume that if you are reading this,

you already know when a command-line interface is better than an interactive interface.
2In UNIX jargon, a filter is a program that reads input from standard input and writes output to standard

output.

3

Program Function
nw clade Extracts subtrees specified by node labels
nw condense Condenses (simplifies) trees
nw display Shows trees as graphs (ASCII graphics or SVG)
nw duration Convert node ages into duration
nw distance Prints distances between nodes, in various ways
nw ed Stream editor (à la sed or awk)
nw gen Random tree generator
nw indent Shows Newick in indented form
nw labels Prints node labels
nw match Finds matches of a tree in another one
nw order Orders tree (preserving topology)
nw prune Removes branches based on labels
nw rename Changes node labels according to a mapping
nw reroot (Re)roots the tree
nw stats Prints tree statistics and properties
nw support Computes bootstrap support of a tree given replicate trees
nw topology Alters branch properties, preserving topology
nw trim Trims a tree at a specified depth

Table 1: The Newick Utilities and their functions

4

Chapter 1

General Remarks

The following applies to all programs in the Newick Utilities package.

1.1 Help

All programs print a help message if passed option -h. Here are the first 20 lines of
nw indent’s help:

$ nw_indent -h | head -20

Indents the Newick, making structure more clear.

Synopsis

nw_indent [-cht:] <newick trees filename|->

Input

Argument is the name of a file that contains Newick trees, or ’-’ (in
which case trees are read from standard input).

Output

By default, prints the input tree, with each parenthesis and each leaf on a
line of its own, and indented a multiple of ’ ’ (two spaces) to reflect
structure. The default output is valid Newick.

The help page describes the program’s purpose, its input and output, and its op-
tions, in a format reminiscent of UNIX manpages. It also shows a few examples. All
examples can be tried out using files in the data directory.

1.2 Input

Since the Newick Utilities are for working with trees, it should be no surprise that the
main input is a file containing trees. The trees must be in Newick format, which is

5

one of the most widely used tree formats. Its complete description can be found at
http://evolution.genetics.washington.edu/phylip/newicktree.html.

The input file is always the first argument to the program (after any options). It
may be a file stored in a filesystem, or standard input. In the latter case, the filename is
replaced by a ’-’ (dash):

$ nw_display mytrees.nw

is the same as

$ cat mytrees.nw | nw_display -

or

$ nw_display - < mytrees.nw

Of course the second (”dashed”) form is only really useful when chaining several pro-
grams into pipelines.

1.2.1 Multiple Input Trees

The input file can contain one or more trees. When there is more than one, I prefer
to have one tree per line, but this is not a requirement: they can be separated by any
amount of whitespace, including none at all. The task will be performed1 on each tree
in the input. So if you need to reroot 1,000 trees on the same outgroup, you can do it all
in a single step (see 2.2).

1.3 Output

All output is printed on standard output (warnings and error messages go to standard
error). The output is either trees or information about trees. In the first case, the trees
are in Newick format, one per line. In the second case, the format depends on the
program, but it is always text (ASCII graphics, SVG, numeric data, textual data, etc.).

1.4 Options

Options change program behaviour and/or allow extra arguments to be passed. They
are all passed on the command line, before the mandatory argument(s), using a single
letter preceded by a dash, in the usual UNIX way. There are no mandatory control files,
although some tasks require additional files (e.g. 2.1.2). For example, we saw above
that nw display produces graphs. By default the graph is ASCII graphics, but with
option -s, the program produces SVG:

$ nw_display -s sometree.nw

All options are described in the program’s help page (see 1.1).

1well, attempted. . .

6

Chapter 2

Simple Tasks

The tasks shown in this chapter all involve a single Newick Utilities program (plus
possibly nw display), so they can serve as introduction to each individual program.

2.1 Displaying Trees

Perhaps the simplest and most common operation on a Newick tree is just to look at it.
But a Newick tree is not very intuitive for us humans, as we can quickly see by looking
e.g. at a tree of Old World primates:

$ cat catarrhini

((((Gorilla:16,(Pan:10,Homo:10)Hominini:10)Homininae:15,Pongo:30)
Hominidae:15, Hylobates:20):10,(((Macaca:10,Papio:10):20,
Cercopithecus:10) Cercopithecinae:25,(Simias:10,Colobus:7)
Colobinae:5)Cercopithecidae:10);

So we want to make a graphical representation from it. This is the purpose of the
nw display program.

2.1.1 As Text

At its simplest, nw display just outputs a text graph. Here is the primates tree, shown
with nw display:

$ nw_display catarrhini

7

+---------------+ Gorilla
|

+-------------+ Homininae---------+ Pan
| +---------+ Hominini

+--------------+ Hominidae +---------+ Homo
| |

+---------+ +----------------------------+ Pongo
| |
| +-------------------+ Hylobates
|

=| +---------+ Macaca
| +-------------------+
| +-----------------------+ Cercopithecinae +---------+ Papio
| | |
| | +---------+ Cercopithecus
+---------+ Cercopithecidae

| +---------+ Simias
+----+ Colobinae

+------+ Colobus

|-------------------|------------------|-------------------|-----
0 20 40 60
substitutions/site

That’s pretty low-tech compared to interactive, colorful graphical displays, but if you
use the shell a lot (like I do), you may find it useful.

You can use option -w to set the number of columns available for display (the de-
fault is 80):

$ nw_display -w 60 catarrhini

8

+----------+ Gorilla
|

+---------+ Homininae---+ Pan
| +------+ Hominini

+---------+ Hominidae +------+ Homo
| |

+------+ +-------------------+ Pongo
| |
| +------------+ Hylobates
|

=| +------+ Macaca
| +------------+
| +----------------+ Cercopithecinae---+ Papio
| | |
| | +-----+ Cercopithecus
+------+ Cercopithecidae

| +------+ Simias
+--+ Colobinae

+----+ Colobus

|-------------|------------|-------------|---
0 20 40 60
substitutions/site

Scale Bar

If the tree is a phylogram, nw display prints a scale bar. Its units can be specified
with option -u, the default is substitutions per site. To suppress the scale bar, pass the
-S switch. The scale bar can also ”go backwards” (option -t), i.e. the scale bar’s zero
is aligned with the leaves and units increase towards the root. This is handy when the
units are ages, e.g. in millions of years ago, but it only makes much sense if the leaves
themselves are aligned. See 2.15 for an example.

Placement of Inner Node Labels

Option -I controls the placement of inner node labels. It takes an argument, which can
be l (lowercase l – towards the leaves), m (in the middle), or r (towards the root). The
default behaviour is l. Here is the above tree, with inner labels near the root:

$ nw_display -w 60 -Ir catarrhini

9

+----------+ Gorilla
|

+-Homininae +------+ Pan
| +-Hominini

+-Hominidae +------+ Homo
| |

+------+ +-------------------+ Pongo
| |
| +------------+ Hylobates
|

=| +------+ Macaca
| +------------+
| +-Cercopithecinae+ +------+ Papio
| | |
| | +-----+ Cercopithecus
+-Cercopithecidae

| +------+ Simias
+-Colobinae

+----+ Colobus

|-------------|------------|-------------|---
0 20 40 60
substitutions/site

2.1.2 As Scalable Vector Graphics

First, a disclaimer: there are dozens of tools for viewing trees out there, and I’m not in-
terested in competing with them. The reasons why I included SVG capabilities (besides
automation, etc.) were:

• I wanted to be able to produce reasonably good graphics even if no other tool
was at hand

• I wanted to be sure that large trees could be rendered1

To produce SVG, pass option -s:

$ nw_display -s catarrhini > catarrhini.svg

Now you can visualize the result using any SVG-enabled tool (all good Web browsers
can do it), or convert it to another format with, say rsvg or Inkscape (http://www.
inkscape.org). The SVG produced by nw display is designed to be easy to edit in
an interactive editor (Inkscape, Adobe Illustrator, etc.): for example, the tree edges are
in one group, and the text in another, so it is easy to change the line width of the edges,
or the font family of the text (you can also do this from nw display using a CSS map,
see 2.1.2).

The following PDF image was produced like this:

$ inkscape -f catarrhini.svg -A catarrhini.pdf

1I have had serious problems visualising trees of more than 1,000 leaves using some popular software I
will not name here - either it was painfully slow, or it simply crashed, or else the output was unreadable,
incomplete, or otherwise unsuitable.

10

Gorilla
16

Pan
10

Homo
10
Hominini

10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

10

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
10

0 20 40 60
substitutions/site

All SVG images shown in this tutorial were processed in the same way. In the rest of the
document we will usually skip the redirection into an SVG file and omit the SVG-to-PDF
conversion step.

Text-mode options

Options for ASCII trees also work for SVG: -S suppresses the scale bar2, and -u specifies
its units; -w governs the tree’s width, except that for SVG the value is in pixels instead
of columns; -I controls the placement of inner node labels.

Radial trees

You can make radial trees by passing the -r switch:

$ nw_display -sr -S -w 450 catarrhini

2The positioning of the scale bar is a bit crude in SVG mode, especially for radial trees. This is mainly
because of the ”SVG string length curse”, that is, the impossibility of finding out the length of a text string in
SVG. This means it is hard to ensure the scale bar will not overlap with a node label, unless one places it far
away in a corner, which is what I do for now. An improvement to this is on my TODO list.

11

Gorilla

Pan

H
om

o
H
om

inini

Homininae

Po
n
g
o

H
om

inidaeHy
lo
ba
te
s

Macaca

Papio

C
ercopithecusCercopithecinae

S
im

ia
s

Co
lo
bu
s

C
ol
ob
in
ae

C
e
rcop

ith
e
cid

a
e

Using CSS

You can modify node style using CSS. This is done by specifying a CSS map, which is
just a text file that says which style should be applied to which node. If file css.map
contains the following

Cercopithecidae in red
stroke:red Clade Macaca Cercopithecus
Apes (Hominoidea) in pinkish
stroke:#fa7 C Homo Hylobates
Colobus and Cercopithecus (individually) in green
stroke:green Individual Colobus Cercopithecus
Hominines in thick blue
"stroke-width:2; stroke:blue" Clade Homo Pan

we can apply the style map to the tree above by passing -c, which takes the name of
the CSS file as argument:

$ nw_display -sr -S -w 450 -c css.map catarrhini

12

Gorilla

Pan

H
om

o
H
om

inini

Homininae

Po
n
g
o

H
om

inidaeHy
lo
ba
te
s

Macaca

Papio

C
ercopithecusCercopithecinae

S
im

ia
s

Co
lo
bu
s

C
ol
ob
in
ae

C
e
rcop

ith
e
cid

a
e

The syntax of the CSS map file is as follows:

• A line that starts with a # (hash) is a comment, and will be ignored, as will be any
line that contains only whitespace (space and TAB), as well as empty lines.

• Each line describes one style and the set of nodes to which it applies. A line
contains elements separated by whitespace (whitespace between quotes does not
count).

• The first element of the line is the style, and it is a snippet of CSS code.

• The second element states whether the following nodes are to be treated individ-
ually or as a clade. It is either Clade or Individual (which can be abbreviated
to C or I, respectively).

• The remaining element(s) are node labels and specify the nodes to which the
style must be applied: if the second element was Clade, the program finds the
last common ancestor of the nodes and applies the style to that node and all
its descendants. If the second element was Individual, then the style is only
applied to the nodes themselves.

In our example, css.map:

13

• the first line states that the style stroke:red must be applied to the Clade de-
fined by Macaca and Cercopithecus, which consists of these two nodes, their
ancestor Cercopithecinae, and Papio.

• Line 2 prescribes that style stroke:#fa7 (an SVG hexadecimal color specifica-
tion) must be applied to the clade defined by Homo and Hylobates, which con-
sists of these two nodes, their last common ancestor (unlabeled), and all its de-
scendants (that is, Homo, Pan, Gorilla, Pongo, and Hylobates, as well as the
inner nodes Hominini, Homininae and Hominidae).

• Line 3 instructs that the style stroke:green be applied individually to nodes
Colobus and Cercopithecus, and only these nodes - not to the clade that they
define.

• Line 4 says that style stroke-width:2; stroke:blue should be applied to
the clade defined by Homo and Pan - note that the quotes have been removed:
they are not part of the style, rather they allow us to improve readability by
adding some whitespace.

The style of an inner clade overrides that of an outer clade, e.g., although the Homo -
Pan clade is nested inside the Homo - Hylobates clade, it has its own style (blue, wide
lines) which overrides the containing clade’s style (pinkish with normal width). Like-
wise, Individual overrides Clade, which is why Cercopithecus is green even
though it belongs to a ”red” clade.

Styles can also be applied to labels. Option -l (lowercase l) specifies the leaf label
style, option -i the inner node label style, and option -b the branch length style. For
example, the following tree, which was produced using defaults, could be improved a
bit:

$ nw_display -sS vertebrates.nw

14

Mesocricetus
0.011042

Tamias
0.010718
56

0.010397

Procavia
0.021350

37
0.010912

Papio
0.010759

Homo
0.000000

Hylobates
0.000000
73

0.000000

63
0.032554

10
0.000000

Sorex
0.000000

5
0.000000

Bombina
0.111002

Didelphis
0.033482
51

0.022711

10
0.010545

Lepus
0.032725

Tetrao
0.253952

4
0.000000

9
0.000000

Bradypus
0.033266

24
0.016349

Vulpes
0.029470

Orcinus
0.200300

53
0.052491

75
0.077647

Xiphias
0.025842

Salmo
0.056027

Oncorhynchus
0.123041

0.486740

100
0.077647

Let’s remove the branch length labels, reduce the vertical spacing, reduce the size of
inner node labels (bootstrap values), and write the leaf labels in italics, using a font
with serifs:

$ nw_display -s -S -v 20 -b ’opacity:0’ -i ’font-size:8’ \
-l ’font-family:serif;font-style:italic’ vertebrates.nw

15

Mesocricetus

Tamias
56

Procavia
37

Papio

Homo

Hylobates
73

63

10

Sorex

5

Bombina

Didelphis
51

10

Lepus

Tetrao
4

9

Bradypus

24

Vulpes

Orcinus
53

75

Xiphias

Salmo

Oncorhynchus

100

Still not perfect, but much better. Option -v specifies the vertical spacing, in pixels, be-
tween two successive leaves (the default is 40). Option -b sets the style of branch labels,
option -l sets the style of leaf labels, and option -i sets the style of inner node labels.
Note that we did not discard the branch lengths (we could do this with nw topology),
because doing so would reduce the tree to a cladogram. Instead, we set their CSS style
to opacity:0 (visibility:hidden also works).

What if we want to change the default style? Say we want the branches in blue, and
two pixels wide? That’s option -d:

$ nw_display -s -S -v 20 -b ’opacity:0’ -i ’font-size:8’ \
-l ’font-family:serif;font-style:italic’ \
-d ’stroke-width:2;stroke:blue’ vertebrates.nw

16

Mesocricetus

Tamias
56

Procavia
37

Papio

Homo

Hylobates
73

63

10

Sorex

5

Bombina

Didelphis
51

10

Lepus

Tetrao
4

9

Bradypus

24

Vulpes

Orcinus
53

75

Xiphias

Salmo

Oncorhynchus

100

2.1.3 Ornaments

Ornaments are arbitrary snippets of SVG code that are displayed at specified node po-
sitions. Like CSS, this is done with a map. The ornament map has the same syntax
as the CSS map, except that you specify SVG elements rather than CSS styles. The
Individual keyword means that all nodes named on a given line sport the corre-
sponding ornament, while Clade means that only the clade’s LCA must be adorned.
The ornament is translated in such a way that its (0,0) coordinate corresponds to the
position of the node (for now it is not rotated, but this may come in a future release).

The following file, ornament.map, instructs to draw a red circle with a black bor-
der on Homo and Pan, and a cyan circle with a blue border on the root of the Homo -
Hylobates clade. The SVG is enclosed in double quotes because it contains spaces -
note that single quotes are used for the values of XML attributes. The ornament map is
specified with option -o:

red disk with black border for human and chimp
"<circle style=’fill:red;stroke:black’ r=’5’/>" I Homo Pan
cyan disk with blue border for ape clade
"<circle style=’fill:cyan;stroke:blue’ r=’5’/>" C Homo Hylobates

$ nw_display -sr -S -w 450 -o ornament.map catarrhini

17

Gorilla

Pan

H
om

o
H
om

inini

Homininae

Po
n
g
o

H
om

inidaeHy
lo
ba
te
s

Macaca

Papio

C
ercopithecusCercopithecinae

S
im

ia
s

Co
lo
bu
s

C
ol
ob
in
ae

C
e
rcop

ith
e
cid

a
e

Ornaments and CSS can be combined:

$ nw_display -sr -S -w 450 -o ornament.map -c css.map catarrhini

18

Gorilla

Pan

H
om

o
H
om

inini

Homininae

Po
n
g
o

H
om

inidaeHy
lo
ba
te
s

Macaca

Papio

C
ercopithecusCercopithecinae

S
im

ia
s

Co
lo
bu
s

C
ol
ob
in
ae

C
e
rcop

ith
e
cid

a
e

Example: Mapping GC Content

In a study of human rhinoviruses, I have produced a phylogenetic tree, HRV ingrp.nw.
I have also computed the GC content of the sequences, and mapped it into a gradient
that goes from blue (33.3%) to red (44.5%). I used this gradient to produce a CSS map,
b2r.map:

$ head -5 b2r.map

"<circle r=’4’ style=’fill:#2500d9;stroke:black’/>" I HRV78
"<circle r=’4’ style=’fill:#2700d7;stroke:black’/>" I HRV12
"<circle r=’4’ style=’fill:#2100dd;stroke:black’/>" I HRV89
"<circle r=’4’ style=’fill:#0000ff;stroke:black’/>" I HRV1B
"<circle r=’4’ style=’fill:#1300eb;stroke:black’/>" I HRV16

in which the fill values are hexadecimal color codes along the gradient. Then:

$ nw_display -sr -S -w 450 -o b2r.map HRV_ingrp.nw

19

HRV16

HRV1B

52

HRV24
HRV85

70

22

HRV11

HRV9H
RV
64

H
R
V
9
4

32
54

1

17

H
R
V
3
9H

R
V
2

9
2

97

H
R
V
8
9

6
2

H
R
V
7
8

H
RV
12

52

1
0
0

HR
V3
7

HR
V3

65HR
V1
4 89HRV

52
HRV17100 75

HRV93

HRV27
99

83

48
POLIO3

POLIO2

POLIO1A

COXA182238

C
O
X
A
17

72

97

C
O
X
A
1

76
E
C
H
O
1 C

O
X
B
2

8
3 E

C
H
O
6

9
9 H
E
V
7
0

H
EV
68

99

7
06

4

CO
XA
14

CO
XA
6

CO
XA

2
59

1
0
0

68

As we can see, the high-GC sequences are all found in the same main clade.

Multiple SVG Trees

Like all Newick Utilities, nw display can handle multiple trees, even in SVG mode.
The best way to do this was not evident: one can generate one file per tree (but then
we break the rule that every program is a filter and so writes to standard output), or
one can put all the trees in one SVG document (but then we have to impose tiling or
some other arrangement), or one can just output one SVG document after another. This
is what we do (this may change in the future). So if you have many trees in document
forest.nw, you can say:

$ nw_display -s forest.nw > forest_svg

But forest svg isn’t valid SVG – it is a concatenation of many SVG documents. You
can just extract them into individual files with csplit:

$ csplit -sz -f tree_ -b ’%02d.svg’ forest_svg ’/<?xml/’ {*}

This will produce one SVG file per tree in forest.nw, named tree 01.svg, tree 02.svg,
etc.

20

2.1.4 Options not Covered

nw display has many options, and we will not describe them all here - all of them are
described when you pass option -h. They include support for clickable images (with
URLs to arbitrary Web pages), nudging labels, changing the root length, etc.

2.2 Rooting and Rerooting

Rooting transforms an unrooted tree into a rooted one, and rerooting changes a rooted
tree’s root. Some tree-building methods produce rooted trees (e.g., UPGMA), others
produce unrooted ones (neighbor-joining, maximum-likelihood). The Newick format
is implicitly rooted, in the sense that there is a ’top’ node from which all other nodes de-
scend. Some applications regard a tree with a trifuraction at the top node as unrooted.

Rooting a tree is usually done by specifying an outgroup. In the simplest case, this
is a single leaf. The root is then placed in such a way that one of its children is the
outgroup, while the other child is the rest of the tree (sometimes known as the ingroup).
Consider the following primate tree, simiiformes wrong:

Homo
5

Pan
10

Gorilla
16

Pongo
30

Hylobates
20

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
20

Cebus
60

20

15

Hominidae
15

Homininae
10

Hominini
5

0 25 50 75 100 125
substitutions/site

It is wrong because Cebus, which is a New World monkey (capuchin), should be
the sister group of all the rest (Old World monkeys and apes, technically Catarrhini),

21

whereas it is shown as the sister group of the macaque-colobus family, Cercopithecidae.
We can correct this by re-rooting the tree using Cebus as outgroup:

$ nw_reroot simiiformes_wrong Cebus | nw_display -s -

which produces:

Cebus
30

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
20

Hylobates
20

Pongo
30

Gorilla
16

Pan
10

Homo
10
Hominini

10

Homininae
15

Hominidae
15

20

30

0 25 50 75 100
substitutions/site

Now the tree is correct. Note that the root is placed in the middle of the ingroup-
outgroup edge, and that the other branch lengths are conserved.

The outgroup does not need to be a single leaf. The following tree is wrong for
the same reason as the one before, except that is has three New World monkey species
instead of one, and they appear as a clade (Platyrrhini) in the wrong place:

22

Homo
5

Pan
10

Gorilla
16

Pongo
30

Hylobates
20

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
20

Cebus
20

Saimiri
15

10

Allouatta
25

Platyrrhini
25

20

15

Hominidae
15

Homininae
10

Hominini
5

0 25 50 75 100 125
substitutions/site

We can correct this by specifying the New World monkey clade as outgroup:

$ nw_reroot simiiformes_wrong_3og Cebus Allouatta | nw_display -s -

23

Cebus
20

Saimiri
15

10

Allouatta
25

Platyrrhini
12.5

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
20

Hylobates
20

Pongo
30

Gorilla
16

Pan
10

Homo
10
Hominini

10

Homininae
15

Hominidae
15

20

12.5

0 20 40 60 80
substitutions/site

Note that I did not include all three New World monkeys, only Cebus and Allouatta.
This is because it is always possible to define a clade using only two leaves. The result
would be the same if I had included all three, though. You can use inner labels too, if
there are any:

$ nw_reroot simiiformes_wrong_3og Platyrrhini

will reroot in the same way (not shown). Beware that inner labels are often used for
support values (as in bootstrapping), which are generally not useful for defining clades.

2.2.1 Rerooting on the ingroup

Sometimes the desired species cannot be used for rooting, as their last common ances-
tor is the tree’s root. For example, consider the following tree:

24

Mesocricetus

Tamias
56

Procavia
37

Papio

Homo

Hylobates
73

63

10

Sorex

5

Bombina

Didelphis
51

10

Lepus

Tetrao
4

9

Bradypus

24

Vulpes

Orcinus
53

75

Danio

100

Tetraodon

Fugu

It is wrong because Danio (a ray-finned fish) is shown closer to tetrapods than to other
ray-finnned fishes (Fugu and Tetraodon). So we should reroot it, specifying that the
fishes should form the outgroup. We could try this:

$ nw_reroot vrt1cg.nw Fugu Danio

But this will fail:

Outgroup’s LCA is tree’s root - cannot reroot. Try -l.

This fails because the last common ancestor of the two pufferfish is the root itself. The
workaround in this case is to try the ingroup. This is done by passing option -l (”lax”),
along with all species in the outgroup (this is because nw reroot finds the ingroup by
complementing the outgroup):

$ nw_reroot -l vrt1cg.nw Danio Fugu Tetraodon | nw_display -s -v 20 -

25

Mesocricetus

Tamias
56

Procavia
37

Papio

Homo

Hylobates
73

63

10

Sorex

5

Bombina

Didelphis
51

10

Lepus

Tetrao
4

9

Bradypus

24

Vulpes

Orcinus
53

75

Danio

Tetraodon

Fugu

100

To repeat: all outgroup labels were passed, not just the two normally needed to find
the last common ancestor – since, precisely, we can’t use the LCA.

2.2.2 Derooting

Some programs insist on being passed an unrooted tree, e.g. if you want to supply
your own tree to PhyML, it has to be ”unrooted”. Strictly speaking, Newick trees are
always rooted, but there is a convention that if the root has three (or more) children,
the tree is considered unrooted. You can deroot a tree (in this limited sense) by passing
option -d to nw reroot. Here is a rooted tree, fagales.nw

Nothofagaceae

Fagaceae

Myricaceae

Juglandaceae

Rhoipteleaceae

Ticodendraceae

Betulaceae

Casuarinaceae

we can deroot it thus:

$ nw_reroot -d fagales.nw | nw_display -s -v 20 -

26

Nothofagaceae

Fagaceae

Myricaceae

Juglandaceae

Rhoipteleaceae

Ticodendraceae

Betulaceae

Casuarinaceae

this works as follows. The program finds which of the root’s two children (it is as-
sumed to have two, otherwise the tree is already considered unrooted in the above
sense) has more children than the other. This is considered the ingroup, and the LCA
of the ingroup is spliced out from the tree, attaching its children directly to the root.
In this example, the ingroup is the Fagaceae - Casuarinaceae clade, and the derooting
results in Fagaceae being directly attached to the root, as is its sister clade (Myricaceae
- Casuarinaceae).

2.3 Extracting Subtrees

You can extract a clade (AKA subtree) from a tree with nw clade. As usual, a clade
is specified by a number of node labels, of which the program finds the last common
ancestor, which unequivocally determines the clade (see Appendix A). We’ll use the
catarrhinian tree again for these examples:

$ nw_display -sS catarrhini

27

Gorilla
16

Pan
10

Homo
10
Hominini

10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

10

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
10

In the simplest case, the clade you want to extract has its own, unique label. This
is the case of Cercopithecidae, so you can extract the whole cercopithecid subtree
(Old World monkeys) using just that label:

$ nw_clade catarrhini Cercopithecidae | nw_display -sS -

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae

Now suppose I want to extract the apes subtree. These are the Hominidae (”great
apes”) plus the gibbons (Hylobates). But the corresponding node is unlabeled in our
tree (it would be Hominoidea), so we need to specify (at least) two descendants:

$ nw_clade catarrhini Gorilla Hylobates | nw_display -sS -

28

Gorilla
16

Pan
10

Homo
10

Hominini
10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

The descendants do not have to be leaves: here I use Hominidae, an inner node, and
the result is the same.

$ nw_clade catarrhini Hominidae Hylobates | nw_display -sS -

Gorilla
16

Pan
10

Homo
10

Hominini
10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

2.3.1 Monophyly

You can check if a set of leaves3 form a monophyletic group by passing option -m:
nw clade will report the subtree only if the LCA has no descendant leaf other than
those specified. For example, we can ask if the African apes (humans, chimp, gorilla)
form a monophyletic group:

$ nw_clade -m catarrhini Homo Gorilla Pan | nw_display -sS -v 30 -

Gorilla
16

Pan
10

Homo
10

Hominini
10

Homininae

Yes, they do – it’s subfamily Homininae. On the other hand, the Asian apes (orangutan
and gibbon) do not:

3In future versions I may extend this to inner nodes

29

$ nw_clade -m catarrhini Hylobates Pongo

[no output]

Maybe early hominines split from orangs in South Asia before moving to Africa.

2.3.2 Context

You can ask for n levels above the clade by passing option -c:

$ nw_clade -c 2 catarrhini Gorilla Homo | nw_display -sS -

Gorilla
16

Pan
10

Homo
10

Hominini
10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

In this case, nw clade computed the LCA of Gorilla and Homo, ”climbed up” two
levels, and output the subtree at that point. This is useful when you want to extract a
clade with its nearest neighbor(s). I use this when I have several trees in a file and my
clade’s nearest neighbors aren’t always the same.

2.3.3 Siblings

You can also ask for the siblings of the specified clade. What, for example, is the sister
clade of the cercopithecids? Ask for Cercopithecidae and pass option -s:

$ nw_clade -s catarrhini Cercopithecidae | nw_display -sS -

Gorilla
16

Pan
10

Homo
10

Hominini
10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

30

Why, it’s the good old apes, of course. I use this a lot when I want to get rid of the
outgroup: specify the outgroup and pass -s – behold!, you have the ingroup.

Finally, although we are usually dealing with bifurcating trees, -s also applies to
multifurcations: if a node has more than one sibling, nw clade reports them all, in
Newick order.

2.3.4 Limits

nw clade assumes that node labels are unique. This should change in the future.

2.4 Computing Bootstrap Support

nw support computes bootstrap support values from a target tree and a file of repli-
cate trees. Say the target tree is in file HRV.nw and the replicates (20 of them) are in
HRV 20reps.nw. You can attribute support values to the target tree like this:

$ nw_support HRV.nw HRV_20reps.nw \
| nw_display -sr -S -w 500 -i ’font-size:small;fill:red’ -

HRV85 1

HRV89 1
HRV1B 1

6

5

HRV9 1HRV94 1

H
RV64 1

16

18

2

H
R
V

7
8
 1

H
R
V

1
2
 1

2
0

1

H
R

V
1

6
 1

H
R
V

2
 1

3

3
H

R
V
39

 1 2
0

H
RV

14
 1

HRV
37

 1
HRV3 1 3

19

HRV93 1

HRV27 1
20

19

14

HEV68 1

HEV70 1

POLIO1A 1

POLIO2 1
13

PO
LIO

3 1

9

C
O
X
A
17 1

C
O

X
A

1
8
 1

16

18

C
O

X
A

1
 1

1
7

C
O

X
B

2
 1

E
C

H
O

6
 1

7

EC
H

O
1

1

1
8

7

1

7

16

CO
XA

14
 1

15 COXA6 1

COXA2 1

2
0

31

In this case I have colored the support values red. Option -p uses percentages instead
of absolute counts.

Notes

There are many tree-building programs that compute bootstrap support. For exam-
ple, PhyML can do it, but for large tasks I typically have to distribute the replicates
over several jobs (say, 100 jobs of 10 replicates each). I then collect all replicates files,
concatenate them, and use nw support to attribute the values to the target tree.

nw support assumes rooted trees (it may as well, since Newick is implicitly rooted),
and the target tree and replicates should be rooted the same way. Use nw reroot to
ensure this.

32

2.5 Retaining Topology

There are cases when one is more interested in the tree’s structure than in the branch
lengths, maybe because lengths are irrelevant or just because they are so short that they
obscure the branching order. Consider the following tree, vrt1.nw:

++ Mesocricetus
| 56
+++37amias
||
|++ Procavia
| 10
| | Papio
| |
|-5 63mo
| | 73
| | Hylobates
|

++ 10rex
||
||+-----+ Bombina
|+9 51
| +-+ Didelphis
|
|-+ Lepus
| 24
|------------+ Tetrao
|

+-------+-75Bradypus
| |
| | +-+ Vulpes

+-----------------------+ 100 +-+ 53
| | +---------+ Orcinus
| |

=| ++ Danio
|
+--+ Tetraodon
|
+-----+ Fugu

|---------|---------|---------|--------|------
0 0.2 0.4 0.6 0.8
substitutions/site

Its structure is not evident, particularly in the upper half. This is because many branches
are short in relation to the depth of the tree, so they are not well resolved. A better-
resolved tree can be obtained by discarding branch lengths altogether:

$ nw_topology vrt1.nw | nw_display -w 60 -

33

+---+ Mesocricetus
+----+ 56

+----+ 37 +---+ Tamias
| |
| +--------+ Procavia

+---+ 10
| | +--------+ Papio
| | |

+---+ 5 +----+ 63 +---+ Homo
| | +----+ 73
| | +---+ Hylobates
| |

+----+ 10+-----------------+ Sorex
| |
| | +-----------------+ Bombina

+----+ 9 +---+ 51
| | +-----------------+ Didelphis
| |
| | +---------------------+ Lepus

+---+ 24 +----+ 4
| | +---------------------+ Tetrao
| |

+---+ 75+-------------------------------+ Bradypus
| |
| | +-------------------------------+ Vulpes

+----+ 100---+ 53
| | +-------------------------------+ Orcinus
| |

=| +---------------------------------------+ Danio
|
+--+ Tetraodon
|
+--+ Fugu

This effectively produces a cladogram, that is, a tree that represents ancestry relation-
ships but not amounts of evolutionary change. The inner nodes are evenly spaced
over the depth of the tree, and the leaves are aligned, so the branching order is more
apparent.

Of course, ASCII trees have low resolution in the first place, so I’ll show both trees
look in SVG. First the original:

$ nw_display -s -v 20 -b "opacity:0" vrt1.nw

34

Mesocricetus

Tamias
56

Procavia
37

Papio

Homo

Hylobates
73

63

10

Sorex

5

Bombina

Didelphis
51

10

Lepus

Tetrao
4

9

Bradypus

24

Vulpes

Orcinus
53

75

Danio

100

Tetraodon

Fugu

0 0.2 0.4 0.6 0.8
substitutions/site

And now as a cladogram:

$ nw_topology vrt1.nw | nw_display -s -v20 -

35

Mesocricetus

Tamias
56

Procavia
37

Papio

Homo

Hylobates
73

63

10

Sorex

5

Bombina

Didelphis
51

10

Lepus

Tetrao
4

9

Bradypus

24

Vulpes

Orcinus
53

75

Danio

100

Tetraodon

Fugu

As you can see, even with SVG’s much better resolution, it can be useful to display the
tree as a cladogram.

nw topology has the following options: -b keeps the branch lengths (obvioulsy,
using this option alone has no effect); -I discards inner node labels, and -L discards
leaf labels. An extreme example is the following, which discards everything but topol-
ogy:

$ nw_topology -IL vrt1.nw

This produces the following tree, which is still valid Newick:

((((((((((,),),(,(,))),),(,)),(,)),),(,)),),,);

Let’s look at it as a radial tree, for a change:

$ nw_topology -IL vrt1.nw | nw_display -sr -

36

2.6 Extracting Distances

nw distance prints distances between nodes, in various ways. By default, it prints
the distance from the root of the tree to each labeled leaf, in Newick order. Let’s look at
distances in the catarrhinian tree:

37

Gorilla
16

Pan
10

Homo
10
Hominini

10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

10

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
10

0 20 40 60
substitutions/site

$ nw_distance catarrhini

56
60
60
55
30
65
65
45
25
22

This means that the distance from the root to Gorilla is 56, etc. The distances are in
the same units as the tree’s branch lengths – usually substitutions per site, but this is
not specified in the tree itself. If the tree is a cladogram, the distances are expressed in
numbers of ancestors. Option -n shows the labels:

$ nw_distance -n catarrhini

38

Gorilla 56
Pan 60
Homo 60
Pongo 55
Hylobates 30
Macaca 65
Papio 65
Cercopithecus 45
Simias 25
Colobus 22

There are two main parameters to nw distance: the method and the selection. The
method determines how to compute the distance (from what node to what node), and
the selection determines for which nodes the program is to compute distances. Let’s
look at examples.

2.6.1 Selection

In this section we will show the different selection types, using the default distance
method (i.e., from the tree’s root – see below). The selection type is the argument to
option -s. The nodes appear in the same order as in the Newick tree, except when
they are specified on the command line (see below).

To illustrate the selection types, we need a tree that has both labeled and unlabeled
leaves and inner nodes. Here it is

$ nw_display -s dist_sel_xpl.nw

B
1

2

2

A
2

3
C

4

0 2 4 6
substitutions/site

We will use option -n to see the node labels.

All labeled leaves

The selection consists of all leaves with a label. This is the default, as leaves will mostly
be labeled and we’re generally more interested in leaves than inner nodes.

$ nw_distance -n dist_sel_xpl.nw

B 3
A 6

39

All labeled nodes

Option -s l. This takes all labeled nodes into account, whether they are leaves or
inner nodes.

$ nw_distance -n -s l dist_sel_xpl.nw

B 3
A 6
C 4

All leaves

Option -s f. Selects all leaves, whether they are labeled or not.

$ nw_distance -n -s f dist_sel_xpl.nw

B 3
4

A 6
7

All inner nodes

Option -s i. Selects the inner nodes, labeled or not.

$ nw_distance -n -s i dist_sel_xpl.nw

2
C 4

All nodes

Option -s a. All nodes are selected.

$ nw_distance -n -s a dist_sel_xpl.nw

B 3
4
2

A 6
7

C 4
0

Command line selection

The selection consists of the nodes whose labels are passed as arguments on the com-
mand line (after the file name). The distances are printed in the same order.

$ nw_distance -n dist_sel_xpl.nw A C

A 6
C 4

40

2.6.2 Methods

In this section we will take the default selection and vary the method. The method is
passed as argument to option -m. I will also use an ad hoc tree to ilustrate the methods:

$ nw_display -s dist_meth_xpl.nw

2

A
2

B
1

d
3

C
1

e
2

r

0 2 4 6
substitutions/site

As explained above, the default selection consists of all labeled leaves – in our case,
nodes A, B and C.

Distance from the tree’s root

This is the default method: for each node in the selection, the program prints the dis-
tance from the tree’s root to the node. This was shown above, so I won’t repeat it here.

Distance from the last common ancestor

Option -m l. The program computes the LCA of all nodes in the selection (in our case,
node e), and prints out the distance from that node to all nodes in the selection.

$ nw_distance -n -m l dist_meth_xpl.nw

A 5
B 4
C 1

Distance from the parent

Option -m p. The program prints the length of each selected node’s parent branch.

$ nw_distance -n -m p dist_meth_xpl.nw

A 2
B 1
C 1

41

Matrix

Option -m m. Computes the pairwise distances between all nodes in the selection, and
prints it out as a matrix.

$ nw_distance -n -m m dist_meth_xpl.nw

A B C
A 0 3 6
B 3 0 5
C 6 5 0

2.6.3 Alternative formats

Option -t changes the output format. For matrix output, (-m m), the matrix is trian-
gular.

$ nw_distance -t -m m dist_meth_xpl.nw

3
6 5

When labels are printed (option -n), the diagonal is shown

$ nw_distance -n -t -m m dist_meth_xpl.nw

A 0
B 3 0
C 6 5 0

For all other formats, the values are printed in a line, separated by TABs.

$ nw_distance -n -t -m p dist_meth_xpl.nw

A B C
2 1 1

2.7 Finding subtrees in other trees

nw match tries to match a (typically smaller) ”pattern” tree to one or more ”target”
tree(s). If the pattern matches the target, the target tree is printed. Intuitively, a pattern
matches a target if one can superimpose it onto the target without ”breaking” either.
More accurately, the following happens (in both trees):

1. leaves with labels found in both trees are kept, the other ones are pruned

2. inner labels are discarded

3. both trees are ordered (as done by nw order, see 2.14)

4. branch lengths are discarded

At this point, the modifed pattern tree is compared to the modified target, and if the
Newick strings are identical, the match is successful.

42

Example: finding trees with a specified subtree topology

File hominoidea.nw contains seven trees corresponding to successive theories about
the phylogeny of apes (these were taken from http://en.wikipedia.org/wiki/
Hominoidea). Let us see which of them group humans and chimpanzees as a sister
clade of gorillas (which is the current hypothesis).

Here are small images of each of the trees in hominoidea.nw:

1 (until 1960) 2 (Goodman, 1964)

HomoHominidae

Pan

Gorilla

Pongo

Hylobates

Pongidae

Hominoidea

HomoHominidae

Pan

Gorilla

Pongo

Pongidae

HylobatesHylobatidae

Hominoidea

3 (gibbons as outgroup) 4 (Goodman, 1974: orangs as outgroup)

HomoHomininae

Pan

Gorilla

Pongo

Ponginae

Hominidae

HylobatesHylobatidae

Hominoidea

Homo

Pan

Gorilla

Homininae

PongoPonginae

Hominidae

HylobatesHylobatidae

Hominoidea

5 (resolving trichotomy) 6 (Goodman, 1990: gorillas as outgroup)

HomoHominini

Pan

Gorilla
Gorillini

Homininae

PongoPonginae

Hominidae

HylobatesHylobatidae

Hominoidea

Homo

Pan
Hominini

GorillaGorillini

Homininae

PongoPonginae

Hominidae

HylobatesHylobatidae

Hominoidea

7 (split of Hylobates)

Homo

Pan
Hominini

GorillaGorillini

Homininae

PongoPonginae

Hominidae

Hylobates

Hoolock

Symphalangus

Nomascus

Hylobatidae

Hominoidea

Trees #6 and #7 match our criterion, the rest do not. To look for matching trees in
hominoidea.nw, we pass the pattern on the command line:

$ nw_match hominoidea.nw ’(Gorilla,(Pan,Homo));’ | nw_display -w 60 -

43

+-----------+ Homo
+-----------+ Hominini

+-----------+ Homininae +-----------+ Pan
| |

+-----------+ Hominidae +-------------Gorillini-+ Gorilla
| |

=| Hominoidea+-------------Ponginae--------------+ Pongo
|
+-------------Hylobatidae-----------------------+ Hylobates

+----------+ Homo
+----------+ Hominini

+-----------+ Homininae+----------+ Pan
| |

+----------+ Hominidae +------------Gorillini+ Gorilla
| |
| +-------------Ponginae------------+ Pongo
|

=| Hominoidea---------------------------------+ Hylobates
| |
| +---------------------------------+ Hoolock
+----------+ Hylobatidae

+---------------------------------+ Symphalangus
|
+---------------------------------+ Nomascus

Note that only the pattern tree’s topology matters: we would get the same results with
pattern ((Homo,Pan),Gorilla);, ((Pan,Homo),Gorilla);, etc., but not with
((Gorilla,Pan),Homo); (which would select trees #1, 2, 3, and 5. In future versions
I might add an option for strict matching.

The behaviour of nw match can be reversed by passing option -v (like grep -v):
it will print trees that do not match the pattern. Finally, note that nw match only works
on leaf labels (for now), and assumes that labels are unique in both the pattern and the
target tree.

2.8 Renaming nodes

Renaming nodes is the rather boring operation of changing a node’s label. It can be
done e.g. for the following reasons:

• building a higher-level tree (i.e., a families tree from a tree of genera, etc)

• mapping one namespace into another (see 2.8.1)

• correcting wrong names

Renaming is done with nw rename. This takes a renaming map, which is just a text file
with the old and new names on the same line.

2.8.1 Breaking the 10-character limit in PHYLIP alignments

A technical hurdle with phylogenies is that some programs do not accept names longer
than, say, 10 characters in the PHYLIP alignment. But of course, many scientific names

44

or sequence IDs are longer than that. One solution is to rename the sequences, before
constructing the tree, using a numerical scheme, e.g., Strongylocentrotus purpuratus →
ID 01, etc. This means we have an alignment of the following form:

154 259
ID_01 PTTSNSAPAL DAAETGHTSG ...
ID_02 SVSSHSVPAL DAAETGHTSS ...
...

together with a renaming map, id2longname.map:

ID_01 Strongylocentrotus_purpuratus
ID_02 Harpagofututor_volsellorhinus
...

The alignment’s IDs are now sufficiently short, and we can use it to make a tree. It will
look something like this:

$ nw_display -s short_IDs.nw -v 30

ID 09

ID 07

ID 04

ID 05

ID 01

ID 02

ID 06

ID 03

ID 08

Not very informative, huh? But we can put back the original, long names :

$ nw_rename short_IDs.nw id2longname.map \
| nw_display -s -l ’font-size:small;font-style:italic’ -w 500 -v 30 -W 6 -

(option -W specifies the mean width of label characters, in pixels – use it when the
default is wrong, as in this case with very long labels and small characters)

45

Anaerobiospirillium succiniciproducens

Notiocryptorrhynchus punctatocarinulatus

Parastratiosphecomyia stratiosphecomyioides

Gammaracanthuskytodermogammarus loricatobaicalensis

Strongylocentrotus purpuratus

Harpagofututor volsellorhinus

Tahuantinsuyoa macantzatza

Ephippiorhynchus senegalensis

Ia io

Now that’s better. . . although exactly what these critters are might not be evident. Not
to worry, I’ve made another map and I can rename the tree a second time on the fly:

$ nw_rename short_IDs.nw id2longname.map \
| nw_rename - longname2english.map \
| nw_display -s -v 30 -W 10 -

bacterium

weevil

soldier flyy

amphipod crustacean

sea urchin

fossil shark

cichlid fishh

saddle-billed stork

bat

2.8.2 Higher-rank trees

Here is a tree of a few dozen enterovirus and rhinovirus isolates. I show it as a clado-
gram (using nw topology, see 2.5) because branch lengths do not matter here. I know
that these isolates belong to three species in two genera: human rhinovirus A (hrv-a),
human rhinovirus B (hrv-b, and enterovirus (hev).

46

$ nw_topology HRV_FMDV.nw | nw_display -sr -w 400 -

FMDV-C

HRV16

HRV1B

52

HRV24HRV85

70

22

HRV11

H
RV
9

H
R
V
6
4

H
R
V
9
4

3
2

54
1

17

H
R
V
3
9H

R
V
2

9
2

9
7

H
R
V
8
9

6
2

H
RV
78H
RV
12

52 1
0
0

HR
V3
7HR

V3

65

HRV
14

89HRV5
2

HRV17 100
75

HRV93

HRV27

99

83

48

POLIO3

POLIO2

POLIO1A

CO
XA18

22

38

C
O
X
A
17

72

97

C
O
X
A
1

76

E
C
H
O
1

C
O
X
B
2

8
3

E
C
H
O
6

9
9

H
EV

7
0

H
EV
68

99

7
06

4

CO
XA
14

CO
XA
6

CO
XA

2

591
0
0

68

I want to see if the tree correctly groups isolates of the same species together. So I use a
renaming map that maps an isolate name to its species (note by the way that the map
file can have comment, whitespace-only and empty lines (which are all ignored), just
like CSS maps (see 2.1.2):

These species belong to HRV-A
HRV16 HRV-A
HRV1B HRV-A
...
HRV-B
HRV37 HRV-B
HRV14 HRV-B
...
Enterovirus
POLIO1A HEV
COXA17 HEV

$ nw_rename HRV_FMDV.nw HRV_FMDV.map \
| nw_topology - | nw_display -srS -w 400 -

47

FMDV-C

HRV-A

HRV-A

52

HRV-A
HRV-A

70

22

HRV-AH
RV-A

H
R
V-A

H
R
V
-A

3
2

54
1

17

H
R
V
-AH

R
V
-A

9
2

9
7

H
R
V
-A

6
2

H
RV
-AH
RV
-A

52 1
0
0

HR
V-
BHR

V-B

65
HRV

-B
89HRV-B

HRV-B 100
75

HRV-B

HRV-B

99

83

48

HEV

HEV

HEV

H
EV

22

38

H
EV

72

97

H
E
V

76

H
E
V

H
E
V

8
3

H
E
V

9
9

H
EV

H
EV

99

7
06

4

HE
V

HE
V

HE
V

591
0
0

68

As we can see, it does. This would be even better if we could somehow simplify the
tree so that clades of the same species were reduced to a single leaf. And, that’s exactly
what nw condense does (see below).

2.9 Condensing

Condensing a tree means reducing its size in a systematic, meaningful way (compare
this to pruning (2.10) which arbitrarily removes branches, and to trimming (2.11) which
cuts a tree at a specified depth). Currently the only condensing method available is
simplifying clades in which all leaves have the same label - for example because they
belong to the same taxon, etc. Consider this tree:

48

A

A

A

A

C

C

B

it has a clade that consists only of A, another of only C, plus a B leaf. Condensing will
replace those clades by an A and a C leaf, respectively:

$ nw_condense condense1.nw | nw_display -s -w 200 -v 30 -

A

C

B

Now the A and B leaves stand for whole clades. The tree is simpler, but the information
about the relationships of A, B and C is conserved, while the details of the A and C
clades is not. A typical use of this is producing genus trees from species trees (or any
higher-level tree from a lower-level one), or checking consistency with other data: For
example condensing the virus tree of section 2.8.2 gives this:

The relationships between the species is now evident – as is the fact that the various
isolates do cluster within species in the first place. This need not be the case, and
renaming-then-condensing is a useful technique for checking this kind of consistency
in a tree (see 3.1 for more examples).

2.10 Pruning

Pruning is simply removing arbitrary nodes. Say you have the following tree (as it
happens, it contains a glaring error since the sister clade of mammals is the amphibian
rather than the bird):

49

Procavia

Vulpes

Orcinus

Bradypus

Mesocricetus

Tamias

Sorex

Homo

Papio

Hylobates

Lepus

Didelphis

Mammalia

Bombina

Tetrao

Danio

Tetraodon

Fugu

and say you only need a subset of the species, perhaps because you want to compare
this tree to another tree with fewer species. Specifically, let’s say you don’t need to
show Tetraodon, Danio, Bombina, and Didelphis. You just pass those labels to nw prune:

$ nw_prune vrt2_top.nw Tetraodon Danio Bombina Didelphis \
| nw_display -s -v 20 -

Procavia

Vulpes

Orcinus

Bradypus

Mesocricetus

Tamias

Sorex

Homo

Papio

Hylobates

Lepus

Tetrao

Fugu

Note that each label is removed individually. The discarding of Didelphis is the cause
of the disappearance of the node labeled Mammalia. And the embarrassing error is

50

hidden by the removal of Bombina.
You can also discard internal nodes, if they are labeled (in future versions it will be

possible to discard a clade by specifying descendants, just like nw clade). For exam-
ple, you can discard the whole mammalian clade like this:

$ nw_prune vrt2_top.nw Mammalia | nw_display -s -

Bombina

Tetrao

Danio

Tetraodon

Fugu

By the way, Tetrao and Tetraodon are not the same thing, the first is a bird (grouse),
the second is a pufferfish.

2.10.1 Keeping selected Nodes

By passing option -v (think of grep -v), the nodes whose labels are passed are kept,
and the other ones are discarded (except unlabeled nodes). And I really mean this: if a
node’s label is not on the command line, it goes away, even if it is an inner node - this
can have surprising results.4.

Suppose I think that the tree is unfairly biased towards mammals (and in a lesser
way, actinopterygians), and want to keep only the following genera: Fugu, Tetrao,
Bombina, Sorex. I could, of course, generate the list of all leaves that must go away,
but it is easier to do this:

$ nw_prune -v vrt2_top.nw Mammalia Fugu Bombina Tetrao Sorex \
| nw_display -s -

Sorex

Bombina

Tetrao

Fugu

Note that I also passed Mammalia, for the reason discussed above: the node with this
label would go away if I did not, resulting in a different tree (try it out).

4In future versions there will be an option for finer control of this behaviour

51

2.11 Trimming trees

Trimming a tree means cutting the nodes whose depth is larger than a specified thresh-
old. Here is what will happen if I cut the catarrhini tree at depth 30:

Gorilla
16

Pan
10

Homo
10
Hominini

10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

10

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
10

0 10 20 30 40 50 60
substitutions/site

The tree will be ”cut” on the red line, and everything right of it will be discarded:

$ nw_trim catarrhini 30 | nw_display -s -

52

Homininae
5

Pongo
5
Hominidae

15

Hylobates
20

10

Cercopithecinae
20

Simias
10

Colobus
7

Colobinae
5

Cercopithecidae
10

0 5 10 15 20 25
substitutions/site

By default, depth is expressed in branch length units – usually substitutions per
site. By passing the -a switch, it is measured in number of ancestors, instead. Here are
the first four levels of a huge tree (it has more than 1000 leaves):

$ nw_trim -a big.rn.nw 4 | nw_display -s -b ’opacity:0’ -

ID 1

972

ID 4

882

960

825

957

618

7

0

1

1

27

0

128

1000

1000

0 0.1 0.2 0.3 0.4
substitutions/site

53

The leaves with labels of the form ID * are also leaves in the original tree, the other
leaves are former inner nodes whose children got trimmed. Their labels are the (abso-
lute) bootstrap support values of those nodes. Note that the branch lengths are con-
served. It is apparent that the ingroup’s lower half has very poor support. This would
be harder to see wihout trimming the tree, due to its huge size.

Trimming cladograms

By definition, cladograms do not have branch lengths, so you need to express depth in
numbers of ancestors, and thus you want to pass -a.

2.12 Indenting

nw indent reformats Newick on several lines, with one node per line, nodes of the
same depth in the same column, and children nodes to the right of their parent. This
shows the structure more clearly than the compact form, but since whitespace is ig-
nored in the Newick format5, the indented form is still valid. For example, this is a tree
in compact form, in file falconiformes:

(Pandion:7,(((Accipiter:1,Buteo:1):1,(Aquila:1,Haliaeetus:2):1):2,
(Milvus:2,Elanus:3):2):3,Sagittarius:5,((Micrastur:1,Falco:1):3,
(Polyborus:2,Milvago:1):2):2);

5except between quotes

54

And this is the same tree, indented:

$ nw_indent falconiformes

(
Pandion:7,
(

(
(

Accipiter:1,
Buteo:1

):1,
(

Aquila:1,
Haliaeetus:2

):1
):2,
(

Milvus:2,
Elanus:3

):2
):3,
Sagittarius:5,
(

(
Micrastur:1,
Falco:1

):3,
(

Polyborus:2,
Milvago:1

):2
):2

);

The structure is much more clear, it is also relatively easy to edit manually in a text
editor - while still being valid Newick.

Another advantage of indenting is that it is resistant to certain errors which would
cause nw display to fail.6 For example, there is an error in this tree:

(Pandion:7,((Buteo:1,Aquila:1,Haliaeetus:2):2,(Milvus:2,
Elanus:3):2):3,Sagittarius:5((Micrastur:1,Falco:1):3,
(Polyborus:2,Milvago:1):2):2);

6This is because indenting is a purely lexical process, hence it does not need a syntactically correct tree.

55

yet it is hard to spot, and trying nw display won’t help as it will abort with a parse
error. With nw indent, however, you can at least look at the tree:

(
Pandion:7,
(

(
Buteo:1,
Aquila:1,
Haliaeetus:2

):2,
(

Milvus:2,
Elanus:3

):2
):3,
Sagittarius:5
(

(
Micrastur:1,
Falco:1

):3,
(

Polyborus:2,
Milvago:1

):2
):2

);

While the error is not exactly obvious, you can at least view the Newick. It turns out
there is a comma missing after Sagittarius:5.

56

The indentation can be varied by supplying a string (option -t) that will be used
instead of the default (which is two spaces). If you want to indent by four spaces
instead of two, you could say this:

$ nw_indent -t ’ ’ accipitridae

(
(

Buteo:1,
Aquila:1,
Haliaeetus:2

):2,
(

Milvus:2,
Elanus:3

):2
):3;

Option -t can also be used to highlight indentation:

$ nw_indent -t ’| ’ accipitridae

(
| (
| | Buteo:1,
| | Aquila:1,
| | Haliaeetus:2
|):2,
| (
| | Milvus:2,
| | Elanus:3
|):2
):3;

Now the indentation levels are easier to see, but at the expense of the tree no longer
being valid Newick.

Finally, option -c (”compact”) does the reverse: it removes all indentation and pro-
duces a compact tree. You can use this when you want to produce a compact Newick
file after editing. For example, using Vim, after loading a Newick tree I do

gg!}nw_indent -

to indent the file, then I edit it, then compact it again:

gg!}nw_indent -c -

57

2.13 Extracting Labels

To get a list of all labels in a tree, use nw labels:

$ nw_labels catarrhini

Gorilla
Pan
Homo
Hominini
Homininae
Pongo
Hominidae
Hylobates
Macaca
Papio
Cercopithecus
Cercopithecinae
Simias
Colobus
Colobinae
Cercopithecidae

The labels are printed out in Newick order. To get rid of internal labels, use -I:

$ nw_labels -I catarrhini

Gorilla
Pan
Homo
Pongo
Hylobates
Macaca
Papio
Cercopithecus
Simias
Colobus

Likewise, you can use -L to get rid of leaf labels, and with -t the labels are printed on
a single line, separated by tabs (here the line is folded due to lack of space).

$ nw_labels -tL catarrhini

Hominini Homininae Hominidae Cercopithecinae Colobinae
Cercopithecidae

2.13.1 Counting Leaves in a Tree

A simple application of nw labels is a leaf count (assuming each leaf is labeled -
Newick does not require labels):

$ nw_labels -I catarrhini | wc -l

10

58

2.14 Ordering Nodes

Two trees that differ only by the order of children nodes within the parent convey the
same biological information, even if the text (Newick) and graphical representations
differ. For example, files falconiformes 1 and falconiformes 2 are different,
and they yield different images:

$ nw_display -sS -v 30 falconiformes_1

Pandion

Aquila

Buteo

Haliaeetus

Milvus

Elanus

Sagittarius

Micrastur

Falco

Polyborus

Milvago

$ nw_display -sS -v 30 falconiformes_2

59

Micrastur

Falco

Milvago

Polyborus

Buteo

Aquila

Haliaeetus

Elanus

Milvus

Pandion

Sagittarius

But do they represent different phylogenies? In other words, do they differ by more
than just the ordering of nodes? To check this, we pass them to nw order and use
diff to compare the results7:

$ nw_order falconiformes_1 > falconiformes_1.ord.nw ; \
nw_order falconiformes_2 > falconiformes_2.ord.nw ; \
diff -s falconiformes_1.ord.nw falconiformes_2.ord.nw

Files falconiformes_1.ord.nw and falconiformes_2.ord.nw are identical

So, after ordering, the trees are the same: they tell the same biological story. Note
that these trees are cladograms. If you have trees with branch lengths, this apprach will
only work if the lengths are identical, which may or may not be what you want. You
can get rid of the branch lengths using nw topology (see 2.5).

2.14.1 Variants

Other ordering criteria are available through option -c. To order a tree by number of
descendants (i.e., ”light” nodes before ”heavy” nodes), pass -c n. This has the effect
of ”ladderizing” trees which are heavily imbalanced. Consider this tree:

7One could also compute a checksum using md5sum, etc

60

HRV85

HRV89

HRV1B

30

25

HRV9

HRV94H
RV64

80

90

10

H
R
V
7
8

H
R
V
1
2

1
0
0

5

H
R
V
1
6

H
R
V
2

1
5

1
5

H
R
V
39

1
0
0

H
RV
14

HR
V3
7

HR
V3

15 95HRV
93

HRV27 100

95

70
HEV68

HEV70

POLIO1A

POLIO2

65

PO
LIO

3

45

C
O
X
A
17

C
O
X
A
1
8

80

90

C
O
X
A
1

8
5

C
O
X
B
2

E
C
H
O
6

3
5

EC
H
O
1

9
03

5

5

35

80

CO
XA
14

75

CO
XA
6

CO
XA
2

1
0
0

Here is the same tree, reordered by number of descendants: light nodes appear before
(clockwise) heavy nodes:

$ nw_order -c n HRV_cg.nw \
| nw_display -sSr -b ’visibility:hidden’ -v 30 -w 450 -

61

COXA6

COXA2

COXA14
HEV68

HEV70EC
H
O
1

C
O
X
B
2

E
C
H
O
6

3
5

90

C
O
X
A
1

C
O
X
A
1
7

C
O
X
A
18

8
0

PO
LI
O
3

PO
LI
O1
A

PO
LIO

2 65

45

90 8
5

3
5

5
35

HRV
93

HRV27 100

HRV14

HRV37

HRV3

15

95

95

HRV39

HRV16
H
RV
2

15
H
R
V
7
8

H
R
V
1
2

1
0
0

H
R
V
8
5

H
R
V
8
9

H
RV
1B

3
0

2
5 H
RV
9

HR
V9
4

HR
V6
4

80
90

1051
5

100

70
80

7
5

100

De-ladderizing

Incidentally, ”ladderizing” a tree may not be a good idea, because it lends itself to
misinterpretations. For example, the following tree leads some people (including pro-
fessional biologists, apparently [1]) to the following mistakes:

Homo

Equus
Mammalia

Columba

Amniota

Xenopus

Tetrapoda

Carcharodon

Gnathostomata

Petromyzon

Vertebrata

• there is a ”chain of being” with ”higher” and ”lower” organisms, with (surprise!)
humans at the top; ”higher” can be interpreted in various ways, including ”more

62

perfect”, or ”more evolved” or even morally superior. This is the scala naturæ
fallacy.

• there is a ”main line” that progressively leads to (surprise!) humans, with ”off-
shoots” along the way – lowly lampreys branching out first, then sharks, etc.

• early-branching species (this is itself an error) are ”primitive”: in our case, it
would mean that the last common ancestor of lampreys and humans was a lam-
prey (or very like one); that the LCA of humans and sharks was very much like a
modern shark, etc.

For a comprehensive discussion of errors in tree-thinking, see [2]. Now, to prevent
these errors, one can reorder the tree in such a way as to remove the ladder. This is
done by passing -c d. The tree is topologically identical, so it tells the same biological
story:

$ nw_order -c d scala.nw \
| nw_display -s -v 30 -l ’font-style:italic’ -

Petromyzon

Xenopus

Homo

Equus
Mammalia

Columba

Amniota

Tetrapoda

Carcharodon

Gnathostomata

Vertebrata

It is less easy now to construe that there is a chain of being, or that evolution is progres-
sive, etc. Unfortunately, some folks take the new tree to mean that humans are more
closely related to amphibians (Xenopus) than to birds (Columba). There is no substitute
to actually learn how to interpret trees, I’m afraid.

2.15 Converting Node Ages to Durations

Sometimes you have information about the age of a node rather than the length of its
branch. Consider the following phylogeny of major chordate groups:

Gnathostomata

Conodonta

Vertebrata

Urochordata

Chordata

63

Suppose we have the following information about the age of certain events (not that
it matters, I found it in Wikipedia and the Palaeos website (www.palaeos.com):

event age (million years ago)
split of vertebrates into gnathostomes and conodonts 530
extinction of conodonts 200
split of chordates into vertebrates and urochordates 540

We can use the branch length field of Newick to specify ages, like this:

$ cat age.nw

(
(

Gnathostomata,
Conodonta:200

)Vertebrata:530,
Urochordata

)Chordata:540;

The ”branch length” of Vertebrata becomes 530, because the vertebrate lineage split
into conodonts and gnathostomes at that date8. Note that the Gnathostomata leaf has
no age: this means that there are still living gnathostomes (such as you and I9); the same
goes for urochordates. In other words, a leaf with no age has an implicit age of zero.
This also ensures that the leaves of the extant taxa are aligned. The Conodonta, on the
other hand, has an age although it is a leaf: this is because the conodonts went extinct,
around 200 Mya.

Now, if we were to display this tree without further ado, it would be nonsense. We
have to convert the ages into durations, and this is the function of nw duration:

$ nw_duration age.nw | nw_display -s -

Gnathostomata
530

Conodonta
330

Vertebrata
10

Urochordata
540

Chordata

0 100 200 300 400 500
substitutions/site

We can improve the graph by supplying option -t to nw display: this aligns the
origin of the scale bar with the leaves and counts backwards. To top it off, we’ll specify
the units as million years ago:

$ nw_duration age.nw | nw_display -s -t -u ’million years ago’ -

8Of course there are other branches in the vertebrate lineage, but they are not shown in this tree
9Well, at least I am one

64

Gnathostomata
530

Conodonta
330

Vertebrata
10

Urochordata
540

Chordata

0100200300400500
million years ago

Since you’re curious, here is what the age.nw tree looks like if we ”forget” to run it
through nw duration:

$ nw_display -s -t -u ’million years ago’ age.nw

Gnathostomata

Conodonta
200

Vertebrata
530

Urochordata

Chordata

0100200300400500600700
million years ago

Now it looks as though only the conodonts are still alive, while the gnathostomes and
urochordates each had brief flashes of existence 200 and 730 million years ago, respec-
tively. Don’t show this to a palaeontologist.

2.16 Generating Random Trees

nw gen generates clock-like random trees, with exponentially distributed branch lengths.
Nodes are sequentially labeled.

$ nw_gen -s 0.123 | nw_display -sSr -

65

n3

n4

n1

n7

n8

n5

n15n
1
6

n
1
1

n
1
7n1
8

n
1
2

n
9

n3
1

n3
2 n2

3

n24
n1
9

n25

n26

n20

n13

n33

n39

n40
n34

n27

n
3
5 n

3
6

n
2
8n2

1
n
2
9

n3
7

n3
8n3

0n2
2n
1
4

n10

n6

n
2

n0

Here I pass option -s, whose argument is the pseudorandom number generator’s seed,
so that I get the same tree every time I produce this document. Normally, you will not
use it if you want a different tree every time. Other options are -d, which specifies the
tree’s depth, and -l, which sets the average branch length.

I use random trees to test the other applications, and also as a kind of null model to
test to what extent a real tree departs from the null hypothesis.

2.17 Stream editing

nw ed is one of the more experimental programs in the Newick Utilities package. It
was inpired by UNIX utilities like sed and awk, which perform an action on the parts
of input (usually lines) that meet some condition.

nw ed iterates over the nodes in a specific order, and for each node it evaluates a
logical expression provided by the user. If the expression is true, nw ed performs a
user-specified action. By default, the (possibly modified) tree is printed at the end of
the run.

Let’s look at an example before we jump into the details. Here is a tree of vertebrate
genera, showing support values:

$ nw_display -s -v 30 vrt2cg.nw

66

Procavia

Vulpes

Orcinus
84

42

Bradypus

16

Mesocricetus

Tamias
88

Sorex

32

Homo

Papio

Hylobates
42

99

Lepus

67

26

78

Didelphis

71

Bombina

30

Tetrao

100

Danio

Tetraodon

Fugu

97

Let’s extract all well-supported clades, using a support value of 95% or more as the
criterion for being well-supported:

$ nw_ed -n vrt2cg.nw ’b >= 95’ s | nw_display -w 65 -

67

+--+ Homo
|

=| 99 +-------------------------+ Papio
+--------------------------+ 42

+-------------------------+ Hylobates

+------------------+ Procavia
|

+-----+ 42 +------------+ Vulpes
| +-----+ 84

+-----+ 16 +------------+ Orcinus
| |
| +------------------------+ Bradypus
|
| +------------+ Mesocricetus

+-----+ 78 +-----+ 88
| | +-----+ 32 +------------+ Tamias
| | | |
| | | +------------------+ Sorex
| | |
| +-----+ 26 +------------+ Homo

+------+ 71 | |
| | | +-----+ 99 +-----+ Papio
| | | | +------+ 42
| | +-----+ 67 +-----+ Hylobates
| | |

+-----+ 30 | +------------------+ Lepus
| | |
| | +------------------------------------+ Didelphis

=| 100 |
| +---+ Bombina
|
+---+ Tetrao

+--+ Danio
|

=| 97 +-------------------------+ Tetraodon
+--------------------------+

+-------------------------+ Fugu

This instructs nw ed to iterate over the nodes, in Newick order, and to print the subtree
(action s) for all nodes that match the expression b >= 95, which means ”intepret the
node label as a (bootstrap) support value, and evaluate to true if that value is greater
than 95”. As we can see, nw ed reports the three well-supported clades (primates,
tetrapods, and ray-finned fishes), in Newick order. We also remark that one of the
clades (primates) is contained in another (tetrapods). Finally, option -n suppresses the
printing of the whole tree at the end of the run, which isn’t useful here.

The two parameters of nw ed (besides the input file) are an address and an action.
Addresses specify sets of nodes, and actions are performed on them.

68

Addresses

Currently, addresses are logical expressions involving node properties, and the action
is performed on the nodes for which the expression is true. They are composed of
numbers, logical operators, and node functions.

The functions have one-letter names, to keep expressions short (after all, they are
passed on the command line). There are two types, numeric and boolean.

name type meaning
a numeric number of ancestors of node
b numeric node’s support value (or zero)
c numeric node’s number of children (direct)
D numeric node’s number of descendants (includes children)
d numeric node’s depth (distance to root)
i boolean true iff node is strictly internal (i.e., not root!)

l (ell) boolean true iff node is a leaf
r boolean true iff node is the root

The logical and relational operators work as expected, here is the list, in order of
precedence, from tightest to loosest-binding. Anyway, you can use parentheses to over-
ride precedence, so don’t worry.

symbol operator
! logical negation
== equality
!= inequality
< greater than
> lesser than
>= greater than or equal to
<= lesser than or equal to
& logical and
| logical or

Here are a few examples:

expression selects:
l all leaves

l & a <= 3 leaves with 3 ancestors or less
i & (b >= 95) internal nodes with support greater than 95%
i & (b < 50) unsupported nodes (less than 50%)

!r all nodes except the root
c > 2 multifurcating nodes

Actions

The actions are also coded by a single letter, for the same reason. For now, the following
are implemented:

code effect modifies tree?
d delete the node (and all descendants) yes
l print the node’s label no
o splice out the node yes
s print the subtree rooted at the node no

69

nw ed is somewhat experimental; it is also the only program that is not deliber-
ately ”orthogonal” to the rest, that is, it can emulate some of the functionality of other
utilities.

2.17.1 Opening Poorly-supported Nodes

When a node has low support, it may be better to splice it out from the tree, reflecting
uncertainty about the true topology. Consider the following tree, HRV cg.nw:

HRV85

HRV89

HRV1B

30

25

HRV9

HRV94H
RV64

80

90

10

H
R
V
7
8

H
R
V
1
2

1
0
0

5

H
R
V
1
6

H
R
V
2

1
5

1
5

H
R
V
39

1
0
0

H
RV
14

HR
V3
7

HR
V3

15 95HRV
93

HRV27 100

95

70

HEV68

HEV70

POLIO1A

POLIO2

65

PO
LIO

3

45

C
O
X
A
17

C
O
X
A
1
8

80

90

C
O
X
A
1

8
5

C
O
X
B
2

E
C
H
O
6

3
5

EC
H
O
1

9
03

5

5

35

80

CO
XA
14

75
CO
XA
6

CO
XA
2

1
0
0

The inner node labels represent bootstrap support, as a percentage of replicates. As
we can see, some nodes are much better supported than others. For example, the
(COXB2,ECHO6) node (top of the figure) has a support of only 35%, and in the lower
right of the graph there are many nodes with even poorer support. Let’s ”open” the
nodes with less than 50% support. This means that those nodes will be spliced out, and
their children attached to their ”grandparent”:

$ nw_ed HRV_cg.nw ’i & b < 50’ o | nw_display -sr -w 450 -

70

HRV85

HRV89

HRV1B
HRV9

HRV94H
RV64

80

90

H
R
V
7
8

H
R
V
1
2

1
0
0

H
R
V
1
6

H
R
V
2

H
R
V
39

100

H
RV
14

HR
V3
7

HR
V3 95

HRV
93

HRV27 100

95

7
0

HEV68

HEV70

POLIO1A

POLIO2

65

PO
LIO

3
C
O
X
A
17

C
O
X
A
1
8

80

90

C
O
X
A
1

85

C
O
X
B
2

E
C
H
O
6

EC
H
O
1

9
0

80

CO
XA
14

7
5

CO
XA
6

CO
XA
2

1
0
0

Now COXB2 and ECHO6 are siblings of ECHO1, forming a node with 90% support. What
this means is that the original tree strongly supports that these three species form a
clade, but is much less clear about the relationships within the clade. Opening the
nodes makes this fact clear by creating multifurcations. Likewise, the lower right of the
figure is now occupied by a highly multifurcating (8 children) but perfectly supported
(100%) node, none of whose descendants has less than 80% support.

71

Chapter 3

Advanced Tasks

The tasks presented in this chapter are more complex than that of chapter 2, and gen-
erally involve many Newick Utilities as well as other programs.

3.1 Checking Consistency with other Data

3.1.1 By condensing

One can check the consistency of a tree with respect to additional information by re-
naming and condensing. For example, I have the following tree of Falconiformes (di-
urnal raptors: eagles, falcons, etc):

Pandion

Accipiter

Buteo

A
q
u
ila

H
al
ia
ee
tu
s

Mi
lvu
s

Elanus

Sagittarius

M
icrastur

Fa
lco

Po
ly
b
o
ru
s

M
ilv
ag
o

72

Now I also have the following information about the family to which each genus be-
longs:

Genus Family
Accipiter Accipitridae
Aquila Accipitridae
Buteo Accipitridae
Elanus Accipitridae
Falco Falconidae
Haliaeetus Accipitridae
Micrastur Falconidae
Milvago Falconidae
Milvus Accipitridae
Pandion Pandionidae
Polyborus Falconidae
Sagittarius Sagittariidae

Let’s see if the tree is consistent with this information. If it is, all families should
form clades. To check this, I will rename each leaf by replacing the genus name by
the family name, then condense the tree. If the original tree is consistent, the final tree
should have one leaf per family.

First, I create a renaming map (see 2.8) based on the above information (here are the
first three lines):

$ head -3 falc_map

Accipiter Accipitridae
Buteo Accipitridae
Aquila Accipitridae

Then I use it to rename, and then I condense the tree:

$ nw_rename falconiformes falc_map \
| nw_condense - \
| nw_display -s -S -v 20 -b opacity:0 -

Pandionidae

Accipitridae

Sagittariidae

Falconidae

As we can see, there is one leaf per family, so the above information is consistent with
the tree.

Let’s see if common English names are also consistent with the tree. Here is one
possible table of vernacular names of the raptor genera:

73

Genus English name
Accipiter hawk (sparrowhawk, goshawk, etc)
Aquila eagle
Buteo hawk
Elanus kite
Falco falcon
Haliaeetus eagle (sea eagle)
Micrastur falcon (forest falcon)
Milvago caracara
Milvus kite
Pandion osprey
Polyborus caracara
Sagittarius secretary bird

And here is the corresponding tree:

$ nw_rename falconiformes falconiformes_vern1.map \
| nw_condense - \
| nw_display -s -S -v 20 -b opacity:0 -

osprey

hawk

eagle

kite

secretary bird

falcon

caracara

So the above common names are consistent with the tree. However, some species
have many common names. For example, the Buteo hawks are often called ”buzzards”
(in Europe), and two species of falcons have been called ”hawks” (in North America):
the peregrine falcon (Falco peregrinus) was called the ”duck hawk”, and the American
kestrel (Falco sparverius) was called the ”sparrow hawk”.1 If we map these common
names to the tree and condense, we get this:

$ nw_rename falconiformes falconiformes_vern2.map \
| nw_condense - \
| nw_display -s -S -v 20 -b opacity:0 -

1This is confusing because there are true hawks called ”sparrow hawks”, e.g. the Eurasian sparrow hawk
Accipiter nisus. To add to the confusion, the specific name sparverius looks like the English word ”sparrow”,
and also resembles the common name of Accipiter nisus in many other languages: épervier (fr), Sperber (de),
sparviere (it). Oh well. Let’s not drop scientific names just yet!

74

osprey

hawk

buzzard

eagle

kite

secretary bird

falcon

hawk

caracara

Distinguishing buzzards from other hawks fits well with the tree. On the other hand,
calling a falcon a hawk does not, hence the name ”hawk” appears in two different
places.

3.2 Bootscanning

Bootscanning is a technique for finding recombination breakpoints in a sequence. It
involves aligning the sequence of interest (called query or reference) with related se-
quences (including the putative recombinant’s parents) and computing phylogenies
locally over the alignment. Recombination is expected to cause changes in topology.
The tasks involved are shown below:

1. align the sequences→multiple alignment

2. slice the multiple alignment→ slices

3. build a tree for each slice→ trees

4. extract distance from query to other sequences (each tree)→ tabular data

5. plot data→ graphics

The distribution contains a script, src/bootscan.sh, that performs the whole pro-
cess. Here is an example run:

$ bootscan.sh HRV_3UTR.dna HRV-93 CL073908

where HRV 3UTR.dna is a FastA file of (unaligned) sequences, HRV-93 is the outgroup,
and CL073908 is the query. Here is the result:

75

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 100 200 300 400 500 600 700 800di
st

an
ce

 to
 r

ef
er

en
ce

 [s
ub

st
./s

ite
]

position of slice centre in alignment [nt]

Bootscanning of HRV_3UTR.dna WRT CL073908, slice size 300 nt

HRV-58
HRV-88

HRV-7
HRV-89
HRV-36

HRV-9
HRV-32
HRV-67

until position 450 or so, the query sequence’s nearest relatives (in terms of substitution-
s/site) are HRV-36 and HRV-89. After that point, it is HRV-67. This suggests that there
is a recombination breakpoint near position 450.

The script uses nw reroot to reroot the trees on the outgroup, nw clade and
nw labels to get the labels of the ingroup, nw distance to extract the distance be-
tween the query and the other sequences, as well as the usual sed, grep, etc. The plot
is done with gnuplot.

3.3 Number of nodes vs. Tree Depth

A simple measure of a tree’s shape can be obtained by computing the number of nodes
as a function of depth. Consider the following trees:

star balanced short leaves

A
8

B
8

C
8

D
8

E
8

F
8

A
7

B
4

C
4

3

1

D
2

E
2

3

F
5

3

A
1

B
1

7

C
1

D
1

E
1

F
1

7

they have the same depth and the same number of leaves. But their shapes are very
different, and they tell different biological stories. If we assume that they are clock-
like (i.e., that the mutation rate is constant over the whole tree), star shows an early
radiation, short leaves shows two stable lineages ending in recent branching, while
balanced shows branching spread over time.

The nodes-vs-depth graphs for these trees are as follows:

76

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

N

od
es

Tree Depth

Number of Nodes as a function of Depth in star

normalized area: .97

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

N

od
es

Tree Depth

Number of Nodes as a function of Depth in balanced

normalized area: .68

77

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

N

od
es

Tree Depth

Number of Nodes as a function of Depth in short_leaves

normalized area: .39

The graphs show the (normalized) area under the curve: it is close to 1 for star-like
trees, close to 0 for trees with very short leaves, and intermdiary for more balanced
trees.

The images were made with the nodes vs clades.sh script (in directory src), in
the following way:

$ nodes_vs_clades.sh star 40

where 40 is just the sampling density (how many points to take on the x axis). The
script uses nw distance to get the tree’s depth, nw ed to sample the number of nodes
at a given depth, and nw indent to count the leaves, plus the usual awk and friends.
The plot is done with gnuplot.

78

Chapter 4

Python Bindings

Although the Newick Utilities are primarily designed for shell use, it is also possible
to use their functions from Python programs: all the core functionality of the utilities
is bundled in a C library, libnw, which can be accessed through Python’s ctypes
module. The distribution contains a file, newick utils.py, that provides the Python
to C mappings; it also builds an object-oriented interface over it.

Let’s say we want to add a utility that prints simple statistics about trees, like the
number of nodes, the depth, whether it is a cladogram or a phylogram, etc. We will
call it nw info.py, and we’ll pass it a Newick file on standard input, so the usage will
be something like:

$ nw_info.py < data/catarrhini

The overall structure of this program is simple: iteratively read all the input trees, and
do something with each of them:� �

1 from newick_utils import *
2
3 for tree in Tree.parse_newick_input():
4 pass # process tree here!� �

Line 1 imports definitions from the newick utils.py module. Line 3 is the main
loop: the Tree.parse newick input reads standard input and yields an instance of
class Tree for each Newick string. We can now work with it, using methods of class
Tree or adding our own:� �

1 #!/usr/bin/env python
2
3 from newick_utils import *
4
5 def count_polytomies(tree):
6 count = 0
7 for node in tree.get_nodes():
8 if node.children_count() > 2:
9 count += 1

10 return count
11
12 for tree in Tree.parse_newick_input():
13 type = tree.get_type()
14 if type == ’Phylogram’:

79

15 # also sets nodes’ depths
16 depth = tree.get_depth()
17 else:
18 depth = None
19 print ’Type:’, type
20 print ’#Nodes:’, len(list(tree.get_nodes()))
21 print ’ #leaves:’, tree.get_leaf_count()
22 print ’#Polytomies:’, count_polytomies(tree)
23 print "Depth:", depth� �

When we run the program, we get:

$ nw_info.py < catarrhini

Type: Phylogram
#Nodes: 19

#leaves: 10
#Polytomies: 0
Depth: 65.0

As you can see, most of the work is done by methods called on the tree object,
such as get leaf count which (surprise!) returns the number of leaves of a tree.
But since there is no method for counting polytomies, we added our own function,
count polytomies, which takes a Tree object as argument.

As another example, a simple implementation of nw reroot is found in src/nw reroot.py.
It demonstrates two approaches: a heavily object-oriented one, in which the user mainly
calls methods on Python objects, and a ”thin” one, in which the calls are essentially to
C functions through libnw. While not as fast as nw reroot, its performance is still
quite acceptable, especially in ”thin” mode.

4.1 API Documentation

Detailed information about all classes and methods available for accessing the Newick
Utilities library from Python is found in file newick utils.py. Note that the library
must be installed on your system, which means that you must compile from source.

80

Appendix A

Defining Clades by their
Descendants

When you need to specify a clade using the Newick Utilities, you either give the label
of the clade’s root, or the labels of (some of) its descendants. Since inner nodes rarely
have labels (or worse, have unuseable labels like bootstrap support values), you will
often need to specify clades by their descendants. Consider the following tree:

Gorilla
16

Pan
10

Homo
10
Hominini

10

Homininae
15

Pongo
30

Hominidae
15

Hylobates
20

10

Macaca
10

Papio
10

20

Cercopithecus
10

Cercopithecinae
25

Simias
10

Colobus
7
Colobinae

5

Cercopithecidae
10

Suppose we want to specify the Hominoidea clade - the apes. It is the clade that con-
tains Homo, Pan (chimps), Gorilla, Pongo (orangutan), and Hylobates (gibbons).

81

The clade is not labeled in this tree, but this list of labels defines it without ambiguity. In
fact, we can define it unambiguously using just Hylobates and Homo - or Hylobates
and any other label. The point is that you never need more than two labels to unambiguously
define a clade.

You cannot choose any two nodes, however: the condition is that the last common
ancestor of the two nodes be the root of the desired clade. For instance, if you used
Pongo instead of Hylobates, you would define the Hominidae clade, leaving out the
gibbons.

A.1 Why not just use node numbers?

Some applications attribute numbers to all inner nodes and allow users to specify
clades by refering to this number. Such a scheme is not workable when one has many
input trees, however, because tere is no guarantee that the same clade (assuming it is
present) will have the same number in different trees.

82

Appendix B

Newick order

There are many ways of visiting a tree. One can start from the root and proceed to
the leaves, or the other way around. One can visit a node before its children (if any),
or after them. Unless specified otherwise, the Newick Utilities process trees as they
appear in the Newick data. That is, for tree (A,(B,C)d)e; the order will be A, B, C,
d, e.

This means that a child always comes before its parent, and in particular, that the
root comes last. This is known as reverse post-order traversal, but we’ll just call it
”Newick order”.

83

Appendix C

Installing the Newick Utilities

C.1 From source

I have tested the Newick Utilities on various distributions of Linux, as well as on Mac
OS X and Cygwin1. On Linux, chances are you already have development tools prein-
stalled, but some distributions (e.g., Ubuntu) do not install GCC, etc. by default. Check
that you have GCC, Bison, Flex, and the GNU autotools, including Libtool. The same
goes for Cygwin. On MacOS X, you need to install XCode (http://developer.
apple.com/tools/xcode). Here are the versions I use (as reported by passing --version
to the program):

Autoconf autoconf (GNU Autoconf) 2.63
Automake automake (GNU automake) 1.11.1
Bison bison (GNU Bison) 2.4.1
Flex flex 2.5.35
GCC gcc (GCC) 4.4.1 20090725 (Red Hat 4.4.1-2)
Libtool ltmain.sh (GNU libtool) 2.2.6b
Make GNU Make 3.81

The package uses the GNU autotools, like many other open source software packages.
So all you need to do is the usual

$ tar xzf newick-utils-x.y.z.tar.gz
$ cd newick-utils-x.y.z
$./configure
$ make
$ make check
make install

The make check is optional, but you should try it anyway. Note that the nw gen test
may fail - this is due to differences in pseudo-random number generators, as far as I
can tell.

C.2 As binaries

Since version 1.1, there are also binary distribution for some platforms. The name of the
archive matches newick-utils-<version>-<platform>.tar.gz. All you need
to do is:

1I use Linux as a main development platform. Although I try my best to get the package to compile on
Macs and Cygwin, I don’t always succeed.

84

$ tar xzf newick-utils-<vesion>-<platform>.tar.gz
$ cd newick-utils-<vesion>-<platform>

The binaries are in src. Testing may be less important than when installing from
source, but you can do it like this:

$ cd tests
$ for test in test*.sh; do ./$test; done

any failure will generate a FAIL message (which you could filter with grep, etc). You
can then copy/move the binaries wherever it suits you.

85

Bibliography

[1] D. A. Baum, S. D. Smith, and S. S. Donovan. Evolution. The tree-thinking challenge.
Science, 310:979–980, Nov 2005.

[2] T. R. Gregory. Understanding evolutionary trees. Evolution: Education and Outreach,
1(2):121–137, Apr 2008.

86

